Dolichol phosphate mannose synthase from the filamentous fungus Trichoderma reesei belongs to the human and Schizosaccharomyces pombe class of the enzyme.

نویسندگان

  • J S Kruszewska
  • M Saloheimo
  • A Migdalski
  • P Orlean
  • M Penttilä
  • G Palamarczyk
چکیده

Dolichol phosphate mannose (DPM) synthase activity, which is required in N:-glycosylation, O-mannosylation, and glycosylphosphatidylinositol membrane anchoring of protein, has been postulated to regulate the Trichoderma reesei secretory pathway. We have cloned a T.reesei cDNA that encodes a 243 amino acid protein whose amino acid sequence shows 67% and 65% identity, respectively, to the Schizosaccharomyces pombe and human DPM synthases, and which lacks the COOH-terminal hydrophobic domain characteristic of the Saccharomyces cerevisiae class of synthase. The Trichoderma dpm1 (Trdpm1) gene complements a lethal null mutation in the S.pombe dpm1(+) gene, but neither restores viability of a S.cerevisiae dpm1-disruptant nor complements the temperature-sensitivity of the S. cerevisiae dpm1-6 mutant. The T.reesei DPM synthase is therefore a member of the "human" class of enzyme. Overexpression of Trdpm1 in a dpm1(+)::his7/dpm1(+) S.pombe diploid resulted in a 4-fold increase in specific DPM synthase activity. However, neither the wild type T. reesei DPM synthase, nor a chimera consisting of this protein and the hydrophobic COOH terminus of the S.cerevisiae DPM synthase, complemented an S.cerevisiae dpm1 null mutant or gave active enzyme when expressed in E.coli. The level of the Trdpm1 mRNA in T.reesei QM9414 strain was dependent on the composition of the culture medium. Expression levels of Trdpm1 were directly correlated with the protein secretory capacity of the fungus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human and Saccharomyces cerevisiae dolichol phosphate mannose synthases represent two classes of the enzyme, but both function in Schizosaccharomyces pombe.

Dolichol phosphate mannose (Dol-P-Man), formed upon transfer of Man from GDPMan to Dol-P, is a mannosyl donor in pathways leading to N-glycosylation, glycosyl phosphatidylinositol membrane anchoring, and O-mannosylation of protein. Dol-P-Man synthase is an essential protein in Saccharomyces cerevisiae. We have cloned cDNAs encoding human and Schizosaccharomyces pombe proteins that resemble S. c...

متن کامل

0 - Glycosylation of Proteins by Membrane Fractions of

In order to investigate 0-glycosylation of proteins in the fungus Trichoderma reesei QM 9414, a membrane preparation was isolated and used to study the glycosylation of endogenous proteins. Exogenously added GDP-[ U-4C]mannose was used to mannosylate both endogenous lipid and protein. The kinetics of mannosylation together with pulse-chase experiments with cold GDP-mannose revealed that lipid w...

متن کامل

Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene

In order to efficiently utilize natural cellulose materials to produce ethylene, three expression vectors containing the ethylene-forming enzyme (efe) gene from Pseudomonas syringae pv. glycinea were constructed. The target gene was respectively controlled by different promoters: cbh I promoter from Trichoderma reesei cellobiohydrolases I gene, gpd promoter from Aspergillus nidulans glyceraldeh...

متن کامل

Overexpression of the gene encoding GTP:mannose-1-phosphate guanyltransferase, mpg1, increases cellular GDP-mannose levels and protein mannosylation in Trichoderma reesei.

To elucidate the regulation and limiting factors in the glycosylation of secreted proteins, the mpg1 and dpm1 genes from Trichoderma reesei (Hypocrea jecorina) encoding GTP:alpha-D-mannose-1-phosphate guanyltransferase and dolichyl phosphate mannose synthase (DPMS), respectively, were overexpressed in T. reesei. No significant increases were observed in DPMS activity or protein secretion in dpm...

متن کامل

Comparison of biochemical properties of recombinant endoglucanase II of Trichoderma reesei in methylotrophic yeasts, Pichia pastoris and Hansenula polymorpha

Bioconversion of cellulosic material into bioethanol needs cellulase complex enzymesthat contain endoglucanase, exoglucanase and beta glucosidase. One of the most important organisms that produce cellulases is the filamentous fungi, Trichoderma reesei which able to secrete large amounts of different cellulases. These enzymes are probably the most widely used cellulases industrially, however, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glycobiology

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 2000